The stress of misfolded proteins: C. elegans models for neurodegenerative disease and aging.

نویسندگان

  • Heather R Brignull
  • James F Morley
  • Richard I Morimoto
چکیده

A growing number of human neurodegenerative diseases are associated with the expression of misfolded proteins that oligomerize and form aggregate structures. Over time, accumulation of misfolded proteins leads to the disruption of cellular protein folding homeostasis and eventually to cellular dysfunction and death. To investigate the relationship between misfolded proteins, neuropathology and aging, we have developed models utilizing the nematode C. elegans. In addition to being genetically tractable, C. elegans have rapid growth rates and short life-cycles, providing unique advantages for modeling neurodegenerative diseases of aging caused by the stress of misfolded proteins. The C. elegans models described here express polyglutamine expansion-containing proteins, as occur in Huntington's disease. Through the use of tissue-specific expression of different lengths of fluorescently tagged polyglutamine repeats, we have examined the dynamics of aggregate formation both within individual cells and over time throughout the lifetime of individual animals, identifying aging and other genetic modifiers as an important physiologic determinant of aggregation and toxicity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HSF1-Controlled and Age-Associated Chaperone Capacity in Neurons and Muscle Cells of C. elegans

Protein stability under changing conditions is of vital importance for the cell and under the control of a fine-tuned network of molecular chaperones. Aging and age-related neurodegenerative diseases are directly associated with enhanced protein instability. Employing C. elegans expressing GFP-tagged luciferase as a reporter for evaluation of protein stability we show that the chaperoning strat...

متن کامل

Oxidative Stress Mechanisms Underlying Parkinson’s Disease-Associated Neurodegeneration in C. elegans

Oxidative stress is thought to play a significant role in the development and progression of neurodegenerative diseases. Although it is currently considered a hallmark of such processes, the interweaving of a multitude of signaling cascades hinders complete understanding of the direct role of oxidative stress in neurodegeneration. In addition to its extensive use as an aging model, some researc...

متن کامل

Reduced Insulin/IGF-1 Signaling Restores the Dynamic Properties of Key Stress Granule Proteins during Aging

Low-complexity "prion-like" domains in key RNA-binding proteins (RBPs) mediate the reversible assembly of RNA granules. Individual RBPs harboring these domains have been linked to specific neurodegenerative diseases. Although their aggregation in neurodegeneration has been extensively characterized, it remains unknown how the process of aging disturbs RBP dynamics. We show that a wide variety o...

متن کامل

TorsinA rescues ER-associated stress and locomotive defects in C. elegans models of ALS

Molecular mechanisms underlying neurodegenerative diseases converge at the interface of pathways impacting cellular stress, protein homeostasis and aging. Targeting the intrinsic capacities of neuroprotective proteins to restore neuronal function and/or attenuate degeneration represents a potential means toward therapeutic intervention. The product of the human DYT1 gene, torsinA, is a member o...

متن کامل

Protein homeostasis in models of aging and age-related conformational disease.

The stability of the proteome is crucial to the health of the cell, and contributes significantly to the lifespan of the organism. Aging and many age-related diseases have in common the expression of misfolded and damaged proteins. The chronic expression of damaged proteins during disease can have devastating consequences on protein homeostasis (proteostasis), resulting in disruption ofnumerous...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Advances in experimental medicine and biology

دوره 594  شماره 

صفحات  -

تاریخ انتشار 2007